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Particle Trajectories and Potentials in a
Plane Sheath Moving in a Magnetoplasma

1. INTRODUCTION

In general, an analytic self consistent solution cannot be obtained for the

interaction of a charged body with a magnetoplasma. The only exception found, the

case treated here, is that of an infinite planar sheath parallel to the magnetic field.

(For an infinite cylindrical magnetron, Page and Adams 1,2 obtained the cutoff.

radius, magnetic field, and a good approximation to the trajectories and electric %

field. ) The solution for a crossed-field gap (plane diode, planar magnetron) is old

(Benham, 3 Birdsall and Bridges 4 and references therein). Instead of emission from

one plate toward a parallel plate, here only one plate (object plane) moving relative

to a plasma is considered. Nevertheless, for the model considered, the cases are

close enough for the solutions to be basically the same. For simplicity, we assume S
the sheath edge to be sharp and parallel to the object plane, collisions to be negligible,

(Received for publication 6 July 1987)

1. Page, L., and Adams, N. I. (1946) Space charge in cylindrical magnetron,
Phys. Re., 69:494-500

2. Page, L., and Adams, N. I. (1958) Principles of Electricity, 3rd Ed. ,
D. Van Nostrand.

3. Benham, W. E. (1935) Electronic theory and the magnetron oscillator
Proc. Phys. Soc., (London) 47:1-53.

4. Birdsall, C.K., and Bridges, W. B. (196G) EIlectroi Dyuait.ics of Diode t{,gions,
Academic Press, Chapter 5.
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)flt I t ' the t It." rIe't( I pZ rti]-Ies to have the same sheath entry an g nd perpen-

dicnia r omnponlent of energ . Whether or not the sheath edge may he considered

shnrp dcpe'nds On the relative valnes Of varioUs scale lengths such as l)ebye length, 0

repelled jes ambient gv ro radius, and totA, sheath thickness. B." these criteria,

or the ioosplic" applications envisioned, the sheath edge is not s harp. E'ven as

't poorpp|oxi zti<), however, the phvsic;al trends of the restilts obtained here

expected to be correct. Without motion between the plasma and object, and the

collisio 1c meln free path much larger than the gv roradius as in the F la ver of the

ionosphie re, the steady state current density to such a surface would be negligible.

Thni s iidue to lack of a meehanism for charged particles continually to come fil

w'ithin two g5 roradii Of the sheath edge where their gyration could cause impact.

(A\ finite plale would wttuallv receive appreciable current along the magnetic field :

lines to and near the edge of the plane. ) With motion, the solution is slightly

different from that for a planar magnetron, hIere, CLItoff or the amount of current

turned back is related to a function of parameters called q as defined and used by

Linson, 5 for example. The range of incidence angles for a moving object is calcu-

kited, the stability of a cutoff sheath is examined, and conclusions are drawn.

5. Linson, R. If. (1969) Current-voltage characteristics of an electron-emitting
satellite in the ionosphere, J. Geophys. Res., 74:2368-2375.
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2. TRAJECTORIES AND FIELDS
Z'B

Figure 1 shows the coordinate system

chosen. The sheath edge is aty°x Y'-
0 YO

is perpendicular to y, y*, and is assumed

to be sharp: the plasma is assumed

neutral with no electric field for y - yo.

and the repelled species is assumed not (a)
to penetrate toy> yo. E 0 , the electric Y

field aty = y is carried through the Z

analysis anyway for generality and for the B_ _ _ _

stability treatment. v is the component .""

parpendicular to B of attracted species

thermal velocity in the plasma fram-e.a

The plasma moves toward the object with

relative velocity vd along y. vo = v + vd. 0o• o g

The attracted species is assumed to (b)

enter the sheath at an angle w'- in the

plasma frame and ci in the object frame.

Calculation is made in the object frame. Figure 1. Coordinate System
qualitatively (a) Plasma Frame and (b) Object

Figures 2 and 3 show Frame S

examples of trajectories; near the sheath

edge for B = 1B and B > 0, positive YO

particles move in the counterclockwise .

and negative in the clockwise sense. A

dot over a quantity means its time

derivative. The electric field is in the

y direction, and the cylindrical radius,

R, is perpendicular to B. So.

Figure 2. Penetrating Trajectories

yo

Figure :3. Rteflecting Trajectories "'

%
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W a*

R- + .y. B p!B, p 1, B > 0, 1-E= -d p/dyv

The initial, thermal, drift velocities, and entrance angle are related as follows:

x = V O CS (Y V o s = V Y v sin vs n Vd' 4 v d 0 %

2 .2 .2 2 e2 0 2 2
V. -X 4- Y, v = x +(y - = v -2vov sin (Y + v

. o g o d d o o d

The differential equations for the attracted pa rticles acre the motion, ( ;hrg\, indl(

Poisson equations:Tedfeentia eqain o h trce 
Stec nctem)in ;,r4,ad:

R sm IE + Ry 1B]

*2 2e 2 + s 2e const.+i s -p - 9 = V 0  + ; .-,

2 00

dy 0

where s = 1 and -1 for the attracted species being ions (asslumed positive, singll

ionized) and electrons respectively, e is the magnitude of thle el'ctronic eh Irgv. n111

m is the mass of the attracted species. Except for the subscript o denotes the

initial .alue, the value at the sheath edge. The time t is chosen zero when the

particle enters the sheath edge. Let

u)rzcB/ m, t.v wr, X= x/r, Y z
g g g *A

dX m dY !/v 2- d 4 2egI:- X x/v , -=dy/v - s . - ' -,
d9 g dO g v mwv

g 0

2 2

v v/V ~ X1 2Y - 1 l+2M sina'Y* +
0 g 0 0

= Cos a'Y* V cOS y, Y' sin a* 4 V\ sin (v_%
0 01 0 0)

4 1I
. . . . ...

% % 0 - . .? - - , 2 e , 'e .. W , --
\'o-% Vo/V % %o % M sn( .,
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0

I ifferentiation b' 0 is denoted by a prime; n dmniotes the ambient plitsma number A

donsit.\; N is the Ma wh number; AI) is the I)ebve length. Normalizing thus, the

di F'fertntial equations become
0

X" sp

I -X 
( 2 ) %

"s = ''. - s

V'2 4- 2 ) - 1 + 2M sin + M 2 (3) %

2qd'4 , (4)

d Y

T'o treat beth species simultaneously, we shall take p s. Then Eqs. (1') and (2')

b:ome

S 2-I , - N' (2)

q > 0, D - D 0, and 1E 0. Thus attracted electrons have the same normalized - .'

trajectory as attracted ions if B has 'and @ and E have) the opposite sign.

Integrating Eq. (1),

X' = cos ( * + Y - . (5)

Continuity of current provides the additional expression needed to determine

the density. This expression, two of the first three equations, and Eq. (4) then

constitute a close set. First, we consider three possible eases concerning S

trajectories. (See Section 3. )

(A) q is sufficiently I- rge; Y(O ) increases and never decreases with 0, as *

in ligure 2. All of the current is transmitted and is assumed to be

collected. S

(B) Between the two limiting values of q, a fraction of the particles return

and the rest are transmitted.

(C) q is sufficiently small, and object 10l and thus sheath edge to object '7',

distance, are sufficiently large; the particles all retu-n as in Figure 3. 4' 4.

This is the cutoff case with no net current. S

5 % .

1 C 2 I VI 4 %" -tl-l + w'lkl- FL~l~d, -. ;oq+-. . q . -' ''
.

. . . ''1' % '
" . .

• +.% " '_- - . .'__ _a_*+-l' " .
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How do the return and forward velocities (-(inp: Ire " *) ince (1 , - ),,d, III), II

' Eq. (5), X1 = X'(Y), then f rom Eq. (3), fo r the same v: u i " I m t "f h_ -e % AP\h. ;.._..,

q Y+ > 0 and Y' < 0. So, the return part of ai traijcctorv is .svnmell'ic 1.() 1hc,

Y' > 0 pa rt. .-v-
N-

Yv = n Y' v = n v d  G
n+ + g 0+ o+ g d

where n and n denote the number density of particles h;ivinc (' - ar ind , < 0im

respectively. This assumes that any returning particles exiting the sheath edge do

not reenter the sheath. Then n,= Mn, /Y' . This Y' > 0 par't ()f the c:urrent
)+ 0a 0

density is constant up to a turning point, 0 (Y' = 0) : T , if a turning point e'xists.
Let F -i be the fraction of the incident current density that is returned if the

collector is beyond a turning point. Then the return partid.e current density at the

same value of Y is

-n-Y'v = n Y'v = (F - l)r, v d () (
_+_g + g d'

Since steady state is assumed and no charge sources or sinks exist in the Sheath,

the net component of flux is the same throughout the sheath. This then is0

[1-(F - 1)Invrd  F =1 for Case A, 1 < F < 2 for case B, and 2 for case C:. ..

00 d0

Eq. (7) times n divided by Eq. (6) shows that, for the same value of Y, iteis

n F (F - 1)n f i t n t e e t ie h

Before reaching any turning point, Tt.uen a

n = n_ + n_ = FMn l/ (7) 9

from the sum of Eqs. (6) and (7) divided by Y'Vg. So, for all three cases, for %''

+ 9

Suince in stay stat isd assmd itand ncage ore rsnseiti h hah

'.
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-dt/dY = = + 2FMq9 11)

From Eqs. (2), (5), and (11),

Y"= FMqO + a + Y - Y (12)

where

a - /2 - cos a* (13)

This quantity has two parts: that due to the non-space-charge-limited initial

electric field, and that due to the angle of the particle's incident velocity with the

sheath normal. 0

The Ansatz Y = -A cos (0 + [) + (O + 1) is substitute,] into 1,:q. (12). This

and the initial conditions lead to the solutio-I ro- Y' _ 0.

Y = + - A cos( + [3+ I,'Mq9 14)o S

Y= A sin (0 + [) + tMq 15)

Y A cos (8 + [3) W1)

A [ 2 I-'Mq) H',

sin (, + - MVMq

Cns j3 at, = - + /

a ~ / - c'O o ( a) 4

00sini = IY' - M (I)/ A 1 .

Th-u q-antit.v 1i is seen to be the 5 component of the itnitialii

Eq. (14) agrees with lBirdsall and B cidges, 4 ISection 5.04. Eq. Ci) . ip to, tiln ;

coefficieunts of the functions of 8 . Sibstituting Eq. (l-1) into 1I(q. c)5. inte ' atiu ,,

and using the initial conditions leads to

X = X + - .Mq - A si.r(8 [311)+ /2)0 + (I- Ih/-2)0

0 0

X" \ sirn(O i I- V l . (22)

%~~. %.'% %

%*5 %% %



From Eq. (3)

M2 ,2 2
4D= 0 + 1+ 2Msin ,* + - -Y' . (23)

With M = 0, this agrees with Birdsall and Bridges 4 [Section 5. 05 Eq. (7)].

For a* < n/2, X' > 0 for all values of Y. For ev* > ir/2, X' < 0 for

Y - Y < -cos * and X' > 0 for Y - Y > -cos a*. For oY* = 7/2, the trajectory

is nearly straight for large q, wave shaped for qm < q - 1 (see Sections 3 and 4),

U-shaped for reflected particles, and less than half a U if collected before reflection.

In summary, the trajectory of each particle is given by Eqs. (20) and (14) for %

Y' > 0 and is symmetric for Y' < 0 (the particles turned back); the electric potential ,..

and field, before a turning point if any, are given by Eqs. (23) [with Eq. (21) and

Eq. (15)] and Eq. (11) respectively; for case C, the electric field beyond the turning

point equals the value at the turning point.

3. THE TURNING POINT "

If the attracted particles can come to a point where Y' = 0, called "the turning

point", generally the magnetic field reflects at least some of them back to the sheath

edge. The limit of q for this occurrence and the value of 0, X, Y, and D at the

turning point are now calculated.

From Eq. (15), case A (F = 1) occurs if and only if A _ Mq. From this and

Eq. (17), the minimum value of q for case A is

2 2 -2 V 2

a + Y' E /4 - E cos a* + V2
q + 0 0 0 0 (24)

n 2 MYI 2M (sino * + M)

qm is a function only of initial (sheath edge) electric field (if any), entrance angle,

and M. 
.

For q <_- qn, from Eq. (15), T , the value of 0 which makes Y' first vanish,

satisfies

-F Mq

sin T +j3)= A (25) 0

cos (r + 3): - I -(FMq) -S26)

C +

A P

A,



.

0

where

S 2 - ( F q = a Y I ( Y o 2 F M q ( 2 7 )
0 0 V.

The sign of the right-hand side of Eq. (26) is due to T + [3 hiving to be in the third

quadrant. Expanding sin T = sin [(T + j3) - 3] , cos T = COS (T + [3) - /31. and

using Eqs. (18), (19), (25), and (26) leads to

S(Y' - FMq) - aFMq
s in T = o 2  (2 8 )

aS + FMq(Y - FMq) S
cos T = - 2 (29)

A2

By setting 0 = T and substituting Eqs. (25) and (26) into Eqs. (20) and (14), we find

the coordinates of the first stationary point for q -q to be

X =X + Y' +-T T+ -y- 2 (30)r 0 0

Y =Y + a+ S+ FMqT (31) S
r 0 Z"V

This is usually the reflection point of the particle. The above results lead to the

following deductions as q goes from a large to a small value.

Case A:

q > q: < 0, F = 1, A < Mq, the only case for which no stationary points

exist. 2

q =q: the limit of case A, S = 0, F= 1, A=Mq, sinT =-a/(Mq), and

COS T = -(Yo/(Mq) - 1) = - 41 - a2 /(Mq) 2 . Stationary points also occur at

0 = T + 2 7Ti, i = 1, 2, 3, ... until the particles are collected.

Case B:

qm/ 2 < q < qm: S = 0, F = qm/q, A = FMq, and T, Xr Yr' A, and the

particle trajectories are independent of q. If the stationary point is before the

object, it is a reflection point for F-1 fraction of the particles; the remaining 2-F

fraction of the particles penetrate to the object.

9 N
1 % 

.% .
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Case C:

q = q M/2: the limit of Case C, the maximum value of q for complete

cutoff; all particles are reflected by the magnetic field unless the turning point is
beyond the object surface. S 0, F = 2, A = 2Mq. -. 

l

2
q < q,/ 2 : S > 0, F = 2, A > 2Mq. and T", X , and Y depend on q. S

. r
What are the limits of (Y, T", qmp and the reflection points as Y 0 0, what is

the range of 0Y*, and what is the corresponding range of a?

For M < 1, the attracted species will enter the sheath,

0 <a < 7T, for

-n/2 <-sin 1M -ca* - w + sin - 1 M < 31/2.

If also 0

-2 - 2<T< 2 ;Vi-M 2 , then for 0 S sin - 1 M <-a/2,

(1) as a* -'-sin- M:

a < 0, Y'-'a-T -*0, qm-, X -'X and Y -Y as they must, andO r 0 r 0

(2) as a* - 7 + sin 1 M:

a > 0, Y' - 0, a -'7,, ir T r 22, q - X X + qM 2
or 0

and Y - Y + 2+l-M L +2qMT.
r 0 -

Physically, the magnetic field swings the particles away from the sheath in

(1) and into the sheath in (2).

For M > 1:
IS

0Cos 1 M= f: (Y = if - COS 1/M <71

when l. -

-n/2 + cos l/M= a* = -17/2 - cos l/M and

and when

-7T/2 + cos- l/M = a* 1 37r/2 - cos- l/M

10



For E. m 0 ',space charge limited),

qo 1 -M
M 2M sin a 2M (sin a* + M)

This, for the three limits of M, is as follows.

(1) For M << 1, q n - 1/(2MY') + 1. For a given value of M, the minimum

value is q = 2 [- + for c('* = ao= rn/2. The maidmum value is -for

04 = -sin - M, a = 0. or u.

(2) For N1 MV 1 (strictly, for M - 11 << 1+ sin a*): q r 1. For
.n

sin ay* 4 -1 and M = 1, q 1.

(3) For M >> 1, q 1/2.

F rom H'q. (32), three qualitatively different types of curves of q m(M) occur:

Type 1: sin 0- = -1, a singular case, V = -v v, shown as curve 1 of Figure 4.

The th, rm:il velocity is equal but opposite to the drift velocity, so y remains zero.

CURVE a SIN a I;OR
2.5-

4 3 2 1 37r~ -I

2 (.97Or1.3)'L -. 99

2.0 3 0or 7r 0
4 7 1

2

qM 1.5-
1mI'.0 Y.

.

0.5 -

2

0 1 I . I I I I 1 1
0.5 1 1.5 2.0 2.5 3.0 3.5 4.0

M

Figure 4. q vs M for Some Values of (jx

11I

J .* . " % *
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Type 2: -1 < sin ce* < 0, v < 0, between the limit of curve 2 asg~y
sin a* -- -1 (the M = 1 line and curve 1) and curve 3 of Figure 4. in the plasma

frame, the particle is moving away from the sheath; however, the sheath is moving

faster, so it catches up to the particle. A minimum occurs at M =M > 1 and

q q where V

2M
sin ce:.: = m (33)

M + 1

q 1 - (34)

m

A maximum occurs at M = MM < 1, which also satisfies these two equations. But

q (M M ) < 0; which is physically meaningless except that the sheath can never

catch up to the particle.

Type 3: sin _it 0. v f! 0, between curves 3 and 4 of Figure 4.

What does this tell us about the effect of varying v from 0 (M to the

maximum value (minimum M = the larger of 0 and -sin a*)?

(1) For type 1

(a) 1 < q: case A. (all incident particles collected)

(b) 0. 5 < q < 1: case B (some particles collected) goes to case A. "

(c) q <0.5: case C goes to case A. Case A exists up to M = 1.

If M < 1, then q < 0, which is physically meaningless except

that the particles can never cross the sheath edge.
(2) For type 2

(a) 0.5 < q: case A goes to case Bat M <M " qm q, then

finally to case C (no particles collected).

(b) 0.25 <q < 0.5: case B.

(c) q <0.25: case C may go to case B.

Either of the latter two may go to case A at M <M and back tocase Bat M < M

before finally going to case C. For all of type 2, this final case C separates

farther from case B without limit. That is, if E = 0,-1
0<sin M <-/2, and-sin a*<M---sin,-:. then (i) -o, (ii) X - X and

- 1 2 m r 0
Y - Y for-sin M - (t*, and (iii) X - X + qMT and

r 0 r 0

Yr -Y + 2 -IM 2 + 2qMT, i < T < 2,q fori7 + sin- M -a*. So, for sufficiently

large ys - yo (thus magnitude of object potential), finally the particles a re reflected . .

at y = yr" If M < -sin a*, then qm < 0, which is physically meaningless except that

the particles move away from the sheath edge, and so can never enter the sheath.

12 "
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(3) For type 3

(a) 0. 5 < q: case A goes to case B, then finally to case U.

(b) 0.25 < q < 0.5: case B goes finally to case C.

(c) q < 0.25: case C remains Case C. Case C separates farther from 4

case B without limit: q -' as M -- 0. At first, this may

contradict intuition since the effect of magnetic field must decrease.

We see from Eq. (31), however, that yr approaches a function

that increases linearly with v as M 0; thus the particlesg
penetrate the sheath without limit.

IfF= 1, E o =0, andq=qm then

T = 2a . (35)

4. RANGE OF INCIDENT ANGLES

To get the range of incident angles, I•

we consider the gyration phase angle -, .

before the particle enters the sheath at Vg
time t = 0, taken to be when the circle of

gyration becomes tangent to the sheath r r /

edge. As before, a sharp sheath edge \

is assumed, and the plane surface and

plasma are coming together along y sheath \, edge
with a relative velocity vd. The -- X

coordinate system is chosen in the 0

object frame with initial conditions as object surface
in Figure 5: the origin on the sheath

edge and the gyrocenter a gyroradius,

rg, before it. The perpendicular

component of velocity in the plasma 0
frame is v = wr . In general, this (3

g g
is different from the 13 used previously.

The particle then is at

Figure 5. Coordinate System and
Initial Conditions

x = r sin (ut + 13) (36')
g

y = vdt - r [1 - Cos(Ut+ 3)] (37') 1

13
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Normalizing as in Section 2, ,

X = sin(0 +jS) (36)

Y = Me - 1 + cos(& + [3). (37)

Let the subscript o designate the value for which Y 0, and a prime designate the

derivative with respect to 0. The entrance angle is determined from the values

at the sheath edge of the derivatives of Eqs. (37) and (36):

'% _k 0 M - sin (0 4-[3

tano 0-- cos(O +[)
o 0

Case 1. M _ 1.

Let 1 be the value of [3 which makes 0 0 the smallest non-negative value, 0 ol'

for which Y' = 0, and let 0o2 be the next larger value of 0 with[3 = [31. The
0 o2 0 0

extrema of a occur for[3 [31: the minimum, 0, for 0 = o and the maimum

for 0 o2 Equating the numerator of Eq. (38) to zero,

sin(O +[3 M. (39)
ol 1

Using this in Eq. (37) = 0,

0ol (I/M)I1 - cos(0 ol + [31)1 = M/1 + 1 -M2 . (40)

From 3 1 (0o + ) -0

-l 11Wl

sin-I M M/[l + IlM . (41)

A particle with a slightly larger value of[3 must gyrate through an additional angle

0 02 - ol (less than a gyration) before reaching the sheath edge, and then enters

it at a M" the largest value of a. ,

002 = (I/M)[l - cos(0o2 + (42)

So, the range of a is

14
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0 -a M = tan -1 M - sin(802 + 1)  (43)cos(0 2 + /)

.'\s M -0: ~ '/.3 ~ M/2, 0 2 ') - aM , and (Y -- 2 , -M. At i

As M -O: 0 01 o21vi .A

M 1: 0 1, o2 i / 2 - 1, and aM Y .

Case 2. M > 1.

Only one value of 0o exists for each value of3. Solving E'q. (37) = 0 for

cO + 0 ) and substituting into Eq. (38),

M- Mo(2-MO )
t - M0 2/M (44) - _P_

Differentiating this with respect to 0 o, equating to 0, solving for 00, and sub-

stituting into Eq. (44) leads to the minimum and maximum values:

tan -1  M 2 -1 - tan - 1  M 2 - 1 (45)

.
As a numerical example, consider a satellite in a low earth orbit and assume

that T= 1000'K, vd= 7km/see, r. = 1011 m 3 and B 0.5 X 10-4 T. Then, for
+ ~w

electrons, M 0.05, 0 I= a - 450, 14 < qm <-, and q 4, 1. For 0 ions,

M0+ = 8.4, 83" -a = 970, 0.44 < q < 0.56, and q= 1.2 X 105. So, the theory

predicts that electrons with the mean thermal velocity would be reflected unless

the distance from the sheath edge to the object surface were less than the reflection

distance, that is, unless the magnitude of the object potential were small, where-

as ions would be practically unaffected by the magnetic field. For attracted elec-

trons with the numerical values above, Figure 6 shows normalized trajectories

from the origin and Figure 7 normalized sheath potentials for three incident angles, %

all case C. The "trajectory" for Y = 0, curve 0 in Table 1, is the point at the ON

origin.
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Figure 6. Electron Trajectories. See Table 1 .
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Table 1. Parameters of Figures 6 and 7 s.
M= 0.05, q =4.1"N

YS
0* a q j3r X Y

'nr r

Cu rve

0 -2.90 00 0 202.3 00 0 0

1 7.2 10 59.0 193.3 10.4 0.18 0.016

2 27.5 30 20.5 173.4 33.9 0.58 0.15

3 43.0 45 14.6 156.3 54.6 0.92 0.35

The x's in Figure 7 are at Y = r . For Y > Y , the curves are linear since there •

is no charge and E is constant. Figures 8 and 9 are trajectories and potentials

respectively for 0+ ions, case A. The curves for the largest value of q are with

the parameters in the first part of this paragraph, and are replotted in Figures 10,

11, and 12. With no magnetic field, Figure 10 and curve 2 of Figure 11 would be

straight vertical lines. As expected, they show that the geomagnetic field deflects

the ions very little. Also as expected, Figures 11 and 12 show a narrow range

of incidence angles and potential distributions for 0+ ions. Although this calculation

is not realistic since the sheath edge is not really sharp and there is a distribution

of velocities, it shows that, for low earth orbit conditions, the predominant values

of a are low for electrons (object positively charged) and near 90' for ions (object

negatively charged). Also, as expected, generally ions are affected very little

whereas electrons are greatly affected by the magnetic field. P
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5. STABILITY OF A CUTOFF SHEATH
F

Section 3 shows that, for this simpli-

fied case and q < qm/ 2 , all of the

attracted particles are reflected away Z B
from the object plane at a certain X

Y = Yr (if ys >y r' see Figure 13),

making a vacuum insulation gap. The E 0
theory also shows that the difference in

object and reflection point potentials, sheath edge
is proportional toYs -y

thstegap increases with increasing Y
I . This is consistent with the

repelled species being repelled farther CHARGE
from the object for ps larger.

Is this result of the theory correct'?

Here, we consider this question. First, - y
ga

we assume a gap and determine whether r
or not it tends to close (decrease in object surface 

thickness). Let 9 b3 the surface charge Y
S s

density on the object and o be the
c

sheath charge in a column of unit cross y

section area from y to Y.

Figur-e 1:3. Insulation tIdp GZ

a 0 FMn
Uc : f snedy = se f y, y dt stFnX) evd 0 /w, (46)

y 0d

from Eq. (9) and the normalization in Section 2. 'or, y, v < Y :
• S

= c  sFn ev T/W , (47) N.

c cm d

the total charge per unit area in the sheath. So, in general, (it, Or M' and

4 O° as Y X s " \We start with a -orM 0% 0) iud the object isolated. 0
.3 0 0 ss CN 0

A variation of Y with Y fixed causes no variation in a while v \ Id ,
th th ti zr I lth0 0 c M s'r

no variation in 0 since the current to the object is zero (although the object
potential varies). (The same results would be obtained by var\ ing y instead of Y

Therefore, 6 E = 0 so that ba = ,6A = 6S = 0. \lso, foni I,( (47), 6 7- 0. The
0 •

maximum magnitude of magnetic field due to the current is :it v Yv w ard maUv
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be shown to be MjI/ 2 , I f j xdy, ix = nex. From Eqs. (9), (21), and the normaliza-

yo

tion, then applying the result to the case in Table 1 giving the largest field, that is,

curve 3, we obtain 2 X 10- 6B. Thus, the magnetic energy is quite accurately only

that due to the ambient magnetic field, so, effectively, it does not vary with y 0

or anything else. The electrical energy is that in the charge, W , plus that in the

insulation gap, Wg. Letting a line over a quantity designate its normalized value:

r E2s 2W=W +W , 2W - f dY, 2W f EdY.c g c Y o c g y g ,
0 r

F = 2, so,

E = E + 4MqO, Y 0 Y Y (48)c 0 0 = -- r

2 e g <_- Y Y (4 9 )

g C mw)Vg ' r s

2W = E r2 Y'dO . (50)c

From Eqs. (15), (44), and (46), W is seen not to vary with Y. From Eq. (31),
c

we note that the sheath charge thickness, Yr Y, does not vary with Y E

does not vary with Y , so

2 -262W = E 6 (Y - Y ) = Y (51)g s r g o

from Eq. (31) since Y is fixed. Since charges tend to move to minimize the

electrical energy, in accord with the plates of a condenser tending to collapse, V_ 0
Y tends to increase. Nevertheless, the theory here indicates that, because of the

maneiitic as well as the electric field, the particles gyrate and drift along the

x axis so that, for q < q /2 and 'P I large enough to make Y < Y : an insulation ? 4&
ms r s ON

gap, Y s - Yr' is maintained. However, the theory assumes that the reflected

attracted and repelled particles disappear after exiting or bouncing off the sheath

edge. Assuming a plane, sharp sheath edge, calculating two ion reflections and

three cluctron gyrations for the case of curye 3, Section 4 leads to the following in- I
ductions. Hoth species gyrate (in opposite senses), reenter the sheath, reexit, reenter,

and so on. After first reaching the sheath edge, due to the motion between plasma

VNI
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and object, they gain energy and penetrate more each gyration, approaching re-

maining in the sheath, that is, with their minimum value of y being y = 0. This

makes the effective sheath edge closer to the object by the penetration depth of

the repelled species. This contradicts the theory here. Simultaneously, both

species drift (in the +x direction for B = -4B). More importantly, the number

density of each species near the sheath edge increases by the ambient number

density each gyration. So the electron number density increases much faster than

that of the ion. If the object is positively charged, the effective q increases just

as rapidly since q - n according to the theory. For example, for curve 3 in

Section 4, the effective electron q would be greater than Im after four gyrations,

about 4 Ms. Furthermore, a increases each gyration, so, if ce < 830, as it is for

the first four gyrations of the numerical electron cases of Section 4, qm decreases.

So, case C roes rapidly to case A or B with no insulation gap. The conduction

current will drain off the excess electrons so that, either case C (or B) is produced

and conduction and (partial) insulation alternately occur, or case B is maintained.

Taking a distribution of particle velocities into account, some of the higher energy

particles with sin a* > 0 (type 3, see Section 3) will penetrate to the object. These 0

considerations and perhaps others thus show that a vacuum insulation gap is not

expected to exist, although a region of low density may. We speculate that essen-

tially these phenomena would occur over most of a positively charged plate with

sufficiently large size and potential.

If the obJect patential and y are held constant while y is increased (the gap

decreased), the amount of charge in the sheath would have to increase (unless E0
changes) since the capacitance per unit area increases. But Eqs. (28), (29), and

(47) are independent of Yo, so this contradicts the theory.

6. CONCLUSIONS

An infinitely large, uniformly charged plane moving perpendicular to its sue-

face in a magnetoplasma is considered. Analytic, self consistent equations of

electric field in the sheath and trajectories of the attracted species through the

sheath are obtained. A uniform magnetic field parallel to the plane surface,

negligible collisions, one velocity of only the attracted species moving into the

sheath, and a sharp sheath edge are assumed. Uniformity of magnetic field aInd

negligible collisions are generally accurate assumptions for an object in low ca th

orbit or highec. Collisions are expeccted to have an app iccihiblc effect if the obiect

size is compar:able to a collision me:m free path. The issuim ptions of' i singhe

velocity and a sharp sheath edge a re inaccurate. Neverthelcss. the physic: t 'ends

of most of thle results obtained heru should be correct. Lv cil thonuh tfhl. oh ct
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moves relative to the plasma, the solution is basically the same as that obtained

much earlier for a planar magnetron.

The effect of a magnetic field is determined by the value of q which is a con-
2

stant times noo/B 2 . If it is much larger than the cutoff q, then the magnetic field

has little effect. The cutoff q, qm" is a function only of sheath entrance angle

and M. For M < < 1, it goes from near 1/(2M) at vertical incidence to - at grazing

incidence in the object frame. It equals 1 for M = 1 and 1/2 for M >> 1. Thus

qm" and therefore the effect of a magnetic field can be quite large at all values 41

of q for sufficiently small values of M. This is expected, since the effect of a

magnetic field increases with decreasing particle energy. For q < q and the

magnitude of the object potential small enough for the reflection distance,"% IL

- Y" to be large compared to the sheath thickness, y - Y. the magnetic field

has little effect. 0

Numerical examples are calculated for typical low earth orbit conditions. I,'or

attracted electrons, the range of incidence angles is found to be below 450,

M =0.05, and q 4. The latter is less than q which is greater than 14. 1,'or

attracted 0+ ions, the incident angle is within 70 of the vertical, M -8, q - 105,

much larger than q which is 0. 5. So the magnetic field affects electrons greatly,

but it affects ions negligibly.

The solution presented here for this simple case, including the reflection dis-

tance, depends only on M, sheath entrance angle, and q. It shows that, as the

magnitude of the object potential increases, the trajectories and potcntial function

do not change; the sheath just thickens, or, if there is an insulation gap, the gap

increases. However, other effects (next paragraph) change this picture.

A stability analysis led to the conclusion that an insulation gap between the

charged sheath and the object would tend to narrow and thus to vanish. With a S

sufficient magnetic field and magnitude of potential, however, the theory indicates .

that the magnetic field swings the attracted particles clear of the object so that a

gap would exist. But the theory assumes that after the repelled species hit the .

sheath edge and after the attracted species exit the sheath, the particles disappear.

Actually, the magnetic field causes any exiting particles to reenter. Assumption

of a plane, sharp sheath edge and calculation of a few gyrations through the sheath

edge results in the particles increasing in number, energy, and penetration each

gyration, and to the speculation that the state either oscillates between cases (13

or C) and A or remains case B. Also, the high energy tail of a realistic velocity •

distribution would penetrate to the plane. So, a perfect insulation gap could never

exist, although a low density region may exist part of the time near the object.

We speculate that basically these phenomena would occur over most of a positively

charged, finite plane as c nsidercd hert-, if its size and potential art, suf itin lv

large. Penetration of the sheath edge by the repelled species results in a P,
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0

contradiction to the theory. Unless the object plane is large compared to the

attracted species gyroradius, edge effects would also be important. So, clearly

a much better, perhaps two or three dimensional treatment, is needed, one with S
a more realistic sheath edge that integrates over all angles of sheath entry and

the speed distribution. Since such a treatment cannot be done analytically, it must

be done numerically. Such a theory would resolve the specific questions raised

above.
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